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NATIONALADVISORYCOMMI3!TEXFORAERONAUTICS 

NORMALCOMPONEXCOF ~UCEDW%OC'EFY WTREVIC~ITY 

OFA~GROTORWlTEANO NUKtFCRMDiXKLCADIMG 

By Rsxry H. Heyson and S. Katzoff 

SUMMARY 

Part I presents a method for computing, from available calculations 
for uniform disk loading, the effect of nonuniform circularly summetrical 
disk loading on the normal component of induced velocity in the vicinity 
of a lifting rotor. Chsxts of the ear+ component of induced velocity 
sre given for the longitudinal plane of symmetry and for the maJor sxes 
of rotors with two different,.nonuniform circularly symmetrical disk 
load distributions. It is shown that the normal ccxuponent of induced 
velocity must be zero at the center of any practical rotor. 

A comparison of the results of this paper with those for a uniform 
disk loading shows that nonuniform disk loading has a powerful effect 
on the induced velocity distribution and that Ft must be taken into 
account in estimating.the effect of the rotor on most components of an 
aircraft. 

Part II develops certain symmetry relations for the induced veloc- 
ities in the plane of a uniformly loaded rotor and also develops relations 
between the radial load distribution of the rotor and the radial vsria- 
tion of induced velocities in the wake. 

Recent rotsry-wing designs incorporate tails for increased a+-bility 
and auxiliary wings for improved forward-flight performance. Aqj estimate 
of the behavior of the complete aircrsft depends upon a knowledge of the 
flow induced by the rotor in the neighborhood of these auxiliary lifting 
surfaces. Such information is relatively meager. The only available 
analytical treatment is that of reference 1, which calculates the normsl 
component of induced velocity of a uniformly loaded liftfng rotor along 
its major exes snd in its longi.tudFnalplane of symmetry. Although the 
assumption of uniform disk loading snd the fact that the calculations 
were made for only one plane are obvious limitations of reference.1, it 
was nevertheless hoped that the results would give useful indications 
of the downwash over small-span auz&lisry lifting surfaces. 
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Wind-tunnel flow surveys (ref. 2), h'owever, indicate that there msy 
be very little relation between the downwash given in reference 1 and the 
downwash for an actual rotor. For example, isrge variations in induced 
velocity across the lateral axis of the rotor were observed, whereas the 
calculations .show no variation at all across the lateral axis. Probably 
the main cause of the variation of induced velocity along the lateral 
axis is that the disk losdtng is not uniform as is assumed in reference 1. 
The purpose of the present paper is to study the consequences of this 
nonuniformity of disk loading. .- - 

Psrt I describes a method of superposition, by means of which the 
results of reference lmsy be used to calculate the induced flow about 
rotors having an arbitrary circularly symmetrical distribution of rotor 
disk loading. Calculated results are presented for two rotors having 
different nonuniform disk loadings. These results show how the distribu- 
tion of disk loading affects the downwash, and are used in reference 2 to 
explain the measured distribution of induced,velocity. 

- --.- 
Part II contains analytical treatments of some interesting charac- d 

teristlcs of the downwash field that were observed during the course of 
the calculations for pert I. More specific&y, part II develops certain 
symmetry relations for the Induced velocities in the plane of the uniformly F 
loaded rotor and also develops relations betieen the radial load distribu- 
tion of the rotor and the radial variation of induced velocities in the 
wake. - 

By Harry H. Heyson 
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Symbols for Part f: 

number of blades 

lift, lb 

blade-element radius, ft 

rotor radius, ft 

radius of vortex cylinder, ft 

normal component of induced velocity, posftive downward, ft/sec 

average, or momentum, value of the normal component of induced 
velocity, positive downward, ft/sec 
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X distance parallel to longitudinal rotor tip-path-plane axis, 
measured positive resrwsrd from center of rotor (fig. l), ft 

Y distance psrallel to lateral rotor tip-path-plane axis, measured 
positive on advsncing side of disk from center of rotor 
(fig. l), ft 

z distance parallel to vertical rotor tip-path-p3aue axis, 
measured positive upwsrdmfrom center of rotation (fig. l), ft 

r circulation, ft2/sec 

If' circulation at tip of blade, ft2/sec 

P mass density of air, slugs/f-t3 

X rotor w&e skew angle, angle between the Z-axis of the tip-path 
plane and the axis of the skewed wake, positive reszward from 
z-axis (fig, l), deg 

R rotor engulsz velocity, radisns/sec 

Theory 

The wake considered as a system of co&al vortex cylinders.- For 
the present simplified theory, the forward speed of the rotor is assumed 
negligible relative to the rotational speed of the blades. Then, at any 
radial location, the lo&L velocity of a blade element is smly C&r, so 
that the LLftper unLtr&aldistsnce canbewritten 

dL -=bbpnrr dr (1) 

where r, in general, is a function of 
snnulus loadI& is 

Local disk loading = 

r. The local. disk loading (or 

bpRrl?dr _ -bpRr 
2xr dr 2a (2) 

In general, as ilJ.ustrated by equations (1) and (2), the local disk 
1 loading varies 88 r timesthebladeloading. Dus, auniformdisk 

loading implies atrian~bla.de loading, and atriaugular disk loading 
implies a parabolic blade loading. 
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Equation (2) also shows that for a uniform disk loading the circula- A 
tion is constant along the blade. For this case, vorticity is accordingly 
shed only at the blade tips, and the wake consists of a single vortex.. 
cylinder. In references 1 and 3, where the lifting rotor is represented 

5 
_ 

by a uniformly loaded disk, the downwash-field is doyres$ondi&i.y calcu- 
lated as the downwash field of this single vortex cylinder. 

If, however, the disk loading is not uniform, the circulation vmies 
along the length of the blade and vorticity must be shed all along the 
blade instead ofonly at the tip. Consequently, a rotor having nonuniform 
disk loading must-be represented by a distribution of shed vortex 
cylinders. 

In the present calculations, these cylinders are all assumed parallel 
and concentric (see fig. 2(b)) and are inclined at a skew angle defined 
by the forward velocity of the rotor smd the momentum-theory value of 
the rotor induced velocity. Such an assumption presents obvious incon- 
sistencies, because such an idealized gecmetry could-not be produced or 
maintained in the nonuniform induced-flow field that it itself-creates. II 
In spite of such inconsistencies, however, the szrangement of concentric 
cylinders is probably a better basis for ccxtrputations than a single vortex 
cylinder trailing from the blade tips. c. 

It is possible to consider that the solution of reference 1 represents 
the flow generated by sny one of these vortex cylinders. The radius used 
in that report should now be considered to be the radius Rv of the 
individual vortex cylinder. The contribution of any single vortex 
cylinder to the total induced flow at a point (g$;) my be read directly 
from the charts of reference 1 at the point [kX/R)( R/Rv), (Y/R)(R/RV), 
(Z/R) (R/%)-j . 

In practice, any arbitrary circularly symmetrical rotor disk-load 
distribution may be approximated by the sum of the loads cqried by a 
finite number of superposed concentric vortex cylinders of suitable 
strength and dimensions. Then the induced velocity field ofthe non- 
uniformly loaded rotor till be the sum of the superposed induced velocity 
fields of the vortex cylinders comprising its wake. 

Same difficulty may be anticipated because of the discontinuities in 
the flow at the edges of the vortex cyli?td&s. In practice, however, only 
a small error occurs if a sufficient-number of vortex cylinders are 
used, and the points of discontinuity themselves are avoided. 

Sample cslculation.- In order to demonstrate the method of super- 
position, the induced velocity at the point 

( 
X Y Z R = 0.2, w = 0, w = 

will be calculated for a rotor with a triangular disk loading and 
operating at a skew angle of 9Oo. 

t 

r 

-- 
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As shown previously, .the local disk loading is proport%onal to I?; 
therefore, for uniform disk loading the circulation is constant along 
the blade. IT the disk loading is triangular, 

r = I?' g 

so that the local disk loading is 

b@ Local disk loading = =I? 5 R 

and the average disk loading for the entire rotor is 

. 

1 Average disk loading = - s 
Rbfl 

a2 0 
Ei-1 +a- dr 

i 
bpSlI" =- 

3fl 

Thus, for this case of the triangular disk loading, 

Localdiskloading =- 2 5 X (Average disk loading) 

Thus, the vortex field of a rotor with a triangular loading may be 
represented by one positive vortex cylinder with the ssme radius as the 
blade tips and a strength 1.5 times as great & a uniformly loaded rotor, 
plus ten equal negative vortex cylinders of smaller radii and a strength 
0.15 times as great as a uniformly loaded rotor. The sum of the resulting 
disk loads is shown in the following sketch snd adequately represents a 
triangularly loaded rotor: 
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The contribution of each vortex cylinder,may be found from fig- 
ure 4(g) of reference 1. 

The computation msy be carried out in tabular form as follows: 

(X/R) (R/Rv) 
0.200 

.2ll 

.236 

.267 
,308 . 
0364 
.445 

(Y/R) (R/RV) 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

(Z/R) (R/RV) Wvo) v 

O.loC r.rg(1.50) = 1.725 
.lC6 
.ll8 
.134 
l S+ 
.182 

:Z 

l-23(-.15) = -.185 
1.24(-.15) = -.186 

-400 
.667 

2.000 
v/v0 = p/v& = 0.094. 

It will be noted, in general, that the. chsrts of reference 1 must 
be extrapolated to obtain the contribution of some of the smaller 
cylinders. Also, if the maximum loading does not occur at the tips, 
more than one positive vortex cylinder till be required to adequately 
represent the flow. 

- 

4 

v 

Induced velocity at center of rotor.- Consider a rotor with a disk 
loading that is uniform everywhere except in a central "cut-out" portion 
where it carries no load. See the follow$ng sketch. 

The vortex field of this rotor msy be represented by Just two vortex 
cylinders of equal, but opposfte, vorticity. Since the smaller cyliziiier 
has the ssme downwash field as the larger cylinder (except for dimensions), 
it follows that the induced velocity is zero at the center of the rotor 
disk. The 6623e 3XSUltj Of course, -a 
zero disk load at its center. 

will follow whenever any rotor has 
Since sll practical rotors have some cut- 

outnear their centers (due to hub, etc.), they all must have zero induced 
velocity at their centers. 

+ 
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This result is a special case of a more general theorem which is 
occasionally useful in comparing the results of theoretical calculations 
made for several different load distributions. Consider a rotor with a 
step loading composed of a nmiber of uniform loads of different radii 
such as in the following sketch: 

The vortex field of thfs rotor may be representedby several vortex 
cylinders of different strength. A uniformly loaded rotor produces an 
induced velocity of v. at its center. Therefore, the induced velocity 
at the center of the step-loaded rotor will be va (due to uniform 
load 1) plus VQ (due to uniform load 2) and so on. The final result 
is that the induced velocity at the center of the step-loaded rotor will 
then be the same as if the local load at the center existed over the 
entire disk rather than just at the center. 

Calculated Results 

Longitudinalplane of symmetry.-Anumber of nondimensional charts 
of the induced velocity have been computed. !&ese charts not anly illus- 
trate the effect of a nonuniform disk loading, but they may also be used as 
working charts for the de termination of the induced velocity at points 
in the field of practical rotors. The calculations were made for rotors 
having two different, circularly symmetrical, nonuniform disk loadings. 
These assumed disk loadings are shown in figure 3. 93~ triangular 
loading was chosen since it is the simplest approxWation to the actual 
rotor disk loading fn all flight conditions. The veriatim of disk 
load labeled "typical load" was measured at a typical cruising condition 
during unpublished results from tests in the Langley full-scale tunnel of 
a rotor equipped to measure the rotor-blade pressure distribution. 

Figure 4 presents 'contour charts of the normal cmuponent of induced 
velocity in the longitudinal plane of symuetry for the rotor with a 
triangular disk loading for six different s.kew angles in the range from 
o" to 900. Figure 5 presents similar chtits for a rotor hating the 
typical measured disk load distribution for three different skew angles 
between 63.43O and 90°, which bracket the skew angle at which this load 
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distribution was measured. Figures 4 and 3 may also be used to find the 
induced velocity distribution for skew angles between 900 and I-800 (the' 
autorotation range) if the Z/R scale is multiplied by -1 and the chart 
for the-supplement of the desired skew ang1e:i.s read. 

Longitudinal axis.- Figures 6 and 7 present the induced velocity 
distribution along the X-&s (o? lo~ngitudinal axis) of the rotors with 
the triangular and typical measured load distributions, respectively. 

Lateral sxis.- Figures 8 and 9 present .the induced velocity distribu- 
tion along the Y-axis (or lateral axis) of the ssme two rotors. 

Figures 6 to 9 may be used for skew angles from 90° to 180° merely 
by reading the curves for the supplement of the desired angle. 

Figure 8 indicates the order of accuracy of the calculations. Part II 
of this paper will show that the variation of induced velocity on the 
lateral axis must be triangular if the diskloading is triangular. r 
Actually, figure 8 indicates a s-light upwasd curvature. !l$e difference 
between these curves snd straight lines is, .hqever, small and could 
probably have been avoided by using a somewhat larger nuaiber of cylinders $ - 
to represent the wake. 

Other regions.- It would be interesting to carry out these calcula- 
tions over the latersi p-lanes where auxilie devices such as wings, tail 
surfaces, or propellers would be located onflight machines. However, 
such calculations would be dependent upon a.knowledge of the flow field of 
the uniformly loaded rotor and this flow field has not yet been ccmputed. 
The flow in these regions can be calculated, if required, from considera- 
tions in reference 1 and the present paper. 

Discussion of Calculated Results 

Longitudinal plane of symmetry.- Figure 10 presents a chart of the 
induced velocity in the longitudinal plane ofeyrznetry of, a uniformly 
loaded rotor at a skew angle 0$.~63,430 (reproduced from ref. 1). 

The effect of nonuniform sxisymmetric losding may be seen by comparing 
figure 10 With figures. 4(d) and 5(a). Since both of the assumed nonuniform 
loads are zero.at the center of the rotor, the induced velocity-at the 
center is zero 1n.bot.h cases1 as opposed to.a value of v/v0 = 1.0 at the 
center of the uniformly loaded rotor. Both.of the nonuniformly loaded 
rotors show an appreciable srea-of upwash Just below and behind the 
center ofrotation. -They also show zero induced.ve1oci-Q further rearward L 
on the center lineof .the.wske. In this plane,-the chart for the triangular 
load distributionshows a roughly trisngulsr induced-velocity profile across 
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the wske, and the chart for .the typical measured load distribution shows 
a more rounded profile across-the wake with a larger area of zero induced 
velocity reflecting the effect of the cut-put region in the vicinity of 
the hub. In contrast, the results for the uniformly loaded rotor case 
shows the induced velocity building up continuously as the flow passes 
through the rotor and rearwar d in the wake until it reaches a uniform 
value of v/v0 = 2.0 near the trailing edge of the rotor. 

Lm.gi tudinal sxis . - Figure ll (obtained fram figs. 6, 7, and 10) shows 
the calculated effect of rotor disk-load distribution on the induced- 
velocity distribution along the X-sxis (longitudinal axis) of the rotor. 
This figure clearly shows the large effect caused by the requirement 
that the induced velocity be zero at the center of the rotor for each of 
the nonuniformly loaded cases. Each of the nonuniformly loaded rotors 
has sn upwash just behind its center, whereas the uniformly loaded rotor 
has downwash values of v/v0 > 1 in this region. The differences in 
induced velocity between the nonuniformly loaded rotors are small along 
this axis; however, the rotor with the typical measured load distribution 
does have a somewhat greater upwash behind the center as a result of the 
larger cut-out region. 

Lateral axis.- Figure 12 presents a similar comparison along the 
Y-axis (lateral axis) of the rotors at a skew angle of 900. TkLa figure 
shows that the lateral center-line distribution is closely similar in 
shape to the distribution of load on the disk. This shrlilarity is 
discussed further in part II. 

It should be noted that the distribution given for the uniformly 
loaded rotor is not the ssme as that given in reference 1, since in the 
present paper the induced velocity is shown as being uniform across the 
lateral axis. A proof that the induced-velocity distribution must be 
uniform at this location is given in part II. In discussions between 
the senior author of reference 1 and the authors of the present paper, 
it was suggested that the inaccuracy in the plane of the disk resulted 
from a basic difficulty in the computational procedure in the location 
near the edge of the disk. It is assumed that the values given in 
reference lsre correct for locations outside the rotor tips. The 
calculations made for the present report were based on composite curves 
similar to the one shown in figure 12. 

An interesting observation csn be made froan figure l-2. Reference 4 
has shown that the uniformly loaded rotor values of induced velocity 
in the plane of symmetry (ref. I) can be used as a guide to estimate the 
average induced velocity across a span of the order of the rotor dismeter 
at sny location. The downwash values for the lateral axis justify this 
result to the same order of accuracy as the measurements of reference 4, 
since the average induced velocity across the span for both.nonuniform 
disk loadings is approximately the ssme as that for the uniformly loaded 
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rotor. (That is, 
cases. ) 

the average value of ---v/v0 is about 1.0 in all three 
However, the differences between the results of reference 1 and 

this paper in the longitudinal plane-of symmetry indicate the possibility c 
of-large errorsif-the uni.formQ loaded rotor flow field is used to 
estimate the effect of the rotor on items of appreciably different span 
than the rotor. 

Concluding Remarks for Part I 

A method of calculating the effect of nonuniform circularly symmet- 
rical disk-load distributions on the normal component of the induced 
velocity of a lifting rotor has been presented. 

The induced velocity at the center of any rotor which has zero 
load at its center (including ai1 practical rotors) must be zero. 

Charts have been presented for the normal component of induced 
velocity along the major axes and for the longitudinal plane of symmetry 

r 

over a wide range of skew angles for rotors with two different, nonuniform 
sxisymmetric disk loadings that sre representative of the actual loading , c 
on the rotor disk. . 

Rotor disk-load distribution has a Wge effect on the induced- 
velocity distribution and must be taken into account in estimating the 
effect of the rotor on most ccmponents of an aircrsft. - I .- 

II. SYMMETRY RJXATIONS AND THE RELATION BEFIMEEN 

RADiXLLOADDISTRIBUTIONARD-THERADIAL 

DOWNWASHDISTFXBDTION IN 'I!KEWAKE 

E@ S. Katzoff 
-.--- -- 

Symmetry Relations Concerning the Induced Velocities 

in the Plane of the Rotor 

The first--section of part II is concerned with the induced field 
of the skewed-cylinder vortex that is assumed in references 1 and 3 to 
represent the wake of a uniformly loaded disk. It will be shown, without-- 
reference to the detailed equations of-the flow, that‘the induced- 
velocity field produced in the plane of the disk by this idealized wake d 
possesses certain symmetries. By providing relations between the induced 
velocities at pairs of symmetrically located points, such symmetries are M 
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usefulfor checking the accuracy of calculated values such as those of 
reference 1. They also provide directly the values of induced velocities 
along the lateral ax%s of the disk. 

It will be noted that the terminology followed in this pact of the 
paper differs fra that usually used in rotary-wing work. The present 
notation was used in order to retain the usual complex-variable symbols 
in two-dimensional flow analyses and also to avoid a confusing multi- 
plicity of subscripts. The reader should note in particular that the 
normal component of induced velocfty w is positive upward in the 
following material. 

Points on the rotor disk.- In figure 13(a) consider a p&r of 
points on the rotor disk, such as P and Q, that have the same lateral 
location and are symmetrically located With respect to the lateral axis. 
That is, if P fs at point (x,y,O), then Q is at point (-x,y,O). Let 
the three ccnrponents of the induced velocity at P be (ul, vl, wl) and 
at Q be (9, ~2, 91, where the third component is generally the only 
component of interest. 

Now consider the entire diagram rotated 180° about the Y-axis so 
that it appears as in figure 13(b). Points P and Q thereby move to 
points P' and Q', where the Lnduced velocities sre, respectively, 
(-up VlY -q> =ti C-9, v29 -w2) l 

If figure 13(b), with the vorticfty reversed, is fitted to fig- 
me 13(a), so that P' falls on Q and Q' falls on P, the two semi- 
infinite vortex cylinders form a single continuous infinite vortex 
;zUnder (fig. 13(c)). The induced velocity at the left-hand point 

' c3a-d Q) is ('q++ ~2-1, ~~444, and at the right-hand point 
(Q’ and P) it is (u~+L+, vl-v2, wl+w2). The two velocities are thus 
equal except for the lateral components, which are equal and opposite. 

In appendix A of reference 3, however, it was shown that the induced 
velocity within this infinite skewed helix is uniform and has no lateral 
component. ?he first result of the present discussion, then, is that 
v2 -vl=vl-v2=0 or vl=v2. 

. The second result is that the sums ul + u2 and wl + w2 are 
uniform. That is, the sums of the two longitudinal components and of the 
two vertical components are the same for all pairs of symmetrically 
located points on the disk (as P 'and Q), srd are equal to the longi- 
tudinal and vertical cqonents of the induced velocity within the 
inf~nitelylonghelix. In the nomenclature of reference 3, 

Ul + u2 = vx' 

Wl -I w2 = vz* 
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Furthermore, if points P and Q sze on the lateral (Y) axis, so 
that they coincide (~1 = u2 and ~1 = w2), 

vx’ Ul = - 2 

That is, the longitudinal and vertical components of the induced velocity 
are constant all. along the lateral diameter of the disk and are equal 
to the values at the center of the disk. 

Points outside the rotor disk.- If points P and Q are beyond 
the e:), the discussion proceeds as before 
except that it no longer follows that u1 + u2 and wl+ w2 are con- 
stant or that vl - v2 is zero. L&e reason, of course, is that after b 
superposition of the tie semi-infinite skeM vortex cylinders the 
points lie outside the infinite--elliptic cylinder instead of inside of c 
it. The combined flow field outside the cylinder is not uniform but ie 
the same as if the cylinder had a solid boundary. That is, the com- 
bined induced flow is two dimensional in planes normalto the cylinder 
axis and CBS be computed as that induced by an elliptic cylinder in a 
steady flow of velocity V co6 X normal .to its axis. The stresmlines 
ofthe induced-flow in the normal plane sre sketched in figure 15. The 
components u' and v' of the induced flow Ln this plane are related 
to ul + ~2, vl - ~2,. and wl + w2 as follows: -. .---- - -- 

u1 + u2 = v’ co9 x 

w1 + w2 = v' sin X 

v2 - v2 = u’ at the right-hand point (P and Q,) 

For points along the lateral axis, 

u1+~=2u1=v’ cosx 

x1 + w2 = 2 w1 = v' sin X 

v1 - v2 = 0 
Y 
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Thus, for points al-g the lateral aM.e, ul and wl can be determined 
directly from the knam two-dimensional flow about the ellipse. 

In order 'to facilitate application of these results, a few remarks 
concerning the calculation of v' sre- contained in the next section. 

Flow about sn elliptic cylinder.- Consider (ffg. 15) the flow 
induced by sn elliptic cylinder of semimajor sxis a and a&minor 
axis b in a cross flow of velocity V COB X. Lettheplane of the 
figurebethe 2' plane, where z' = x' + iy' (the x1 axisiepsrallel 
to the y-axis, or the lateral ~JKLS of the disk). 

The flow is probably best treated in el3ptic coordinates, related 
to the rectangular coordinates by 

2’ = c cash f 

where 

rrlle complexflowfunctfon w for the field induced by the ellipse 
in the steady cross flow of velocity V co6 X is 

w= (Vcos X)i F -( ,ae 

(The equation msy be obtained, for example, from the equation on page 256 
in ref. 5 by putting U equal to zero, replacing V by V cos X, and 
omitting the free-stream flow function.) Then the complex velocity is 

dw dw d 
-4- 

e-5 
dz'= dz' dc = -(V co8 a-b c sinh f 

= -(v CO8 X) %/Is&&y 

Putting c = 5 + iq and mtitiplying numerator and denominator by the 
conjugate of the denominator a5 -isl) e - 1 > leads to the foLLow%ng expres- 
sion for v*, the negative of the Fmaginary part of a: Gezt 
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V' = 2(v CO8 x) E g 
J 

e2e cos 2q -1 
e4E -lie25 COB 2q+l 

or 

v’ = (v cos x) a(a +b) COB 2q - e-25 
c2 cash 2e - COB 2~ 

Since x' + iy' = c cash (6 +iq), thevsluesof 5 and q corresponding 
to any point (x',y*) in the field of the ellipse are obtainable directly 
from tables of complex hy-perbollc functions (ref. 6). (Inusingthese 
tables, note that q is given in units of 7c/2i It will be observed 

that cos x = $ sad sin x = 4. 
> 

It wLll be noted that the points P, P*, Q,and Q* lieina 
plane which intersects the plane of the ellipse at the angle X. However, l 

because of the two-dimensional character of the flow, the desired values 
of the induced velocities at a point (x y) in the plane of the rotor may 
be found at the point (x'=y, y'=x COB x I 

* 
in the plane of the ellipse. 

Relations Between the Radial Variation of Disk Loading and the ---. - .- 
Radial Variation of D ownwash Velocity Within the Downstream Wake 

It was shown in figure I2 that the ccuuputed lateral variation of the 
downwash angle across the lateral axis resealed the assumed radial dis- 
tribution of disk loading. An effort was therefore made to determine 
whether the resemblance was mainly fortuitous or whether a general 
theoretical basism&isted for it. 

It was found possible to show that, for the far wake, the downwash 
velocFty along any radius is proportional to rn if the disk loading 
is also proportional to rn. 'Ihe proportionality factor, however, 
depends on n (in addftfon to the azimuth). Accordingly, if the radial 
disk loading i's represented by a power series, the downwash velocity along 
any radius is also represented by a power series where, however, the 
respective coefficients of the two series sre not proportional. 'Iqlus the 
radial loading is not, in general, exactly proportional to the radial 
downwash-velocity distribution, although the two w be nearly propor- 
tional if the radial loading is approximately proportional to, sqy, 
r oz 3. d 

In the following development the simplest case, X = 0, will be 
discussed first. The general case, o" < x < 900, will then be discussed. b 
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Finally, the particular case X = 9C", which is related to linearized 
lifting-surface theory, will be discussed. 

The case X= O",- 
x = oa. 

The problem is simple for the circular wake, 
Consider first the uniformly loaded disk, which produces a 

singlehelicalvortex3yingalong a circular cylinder. Inthefsr 
wake the downwashwitbinthe cylinder is uniform, and there is nodown- 
wash at all outside the cylinder. For aninfinitesImal annfius (dr) of 
disk loading, the w&e is then two concentric circular cylinders having 
equal and opposite vorticity aud separated by dr. The dowmm sh between 
the two cylinders is uniform and proportional to the smmlus loading. 
The downwash everywhere else is zero. IY the diskloadingis made up 
of a continuous distribution of such amniB, the downwash directly 
downstream of each snnulus is thus deter&ned onlybythataznulusloading 
and is notaffectedby the loadLug of any other ammlus. For this case, 
then, the radial variation of downwash velocity is proparticmal. to the 
radial variation of disk loading. Restricting the theoremto losdings 
that are proportional to m is unnecessary for this csse, which will 
be recognized as merelytkrewell-~ownprapellerblade-elementtheory 
applied to the far wake instead of to the disk itself where the fnduced 
velocities sxe only half as much. 

The ca3e OO<X< gO".- As previously mentioned, the uniformly 
loaded disk produces an ultimate wake Fn the form of an inclined elliptic 
cylinder, within which the induced flow is uniform and outside of which 
the induced flow is that due to au elliptic cylinder in the cross-flow 
conp?onent of the free-stream flow. If theloadingis circU3.y symmet'- 
rFcal but not uniform, the wake consists of a corresponding distribution 
of concentric sim&lm elliptic cylinders, and the present problem is 
concerned tith the superposition of their induced flow fields. 

If each cylinder induced only the uniform internal velocity field 
and induced no gxternal field, the argument would proceed just as for 
the case X = 0 , and it would follow fmmedfately that the radis3 distri- 
bution of induced velocity is proportional to the radial loading distri- 
bution. In order to prove the theorem, then, it is only necessary to 
show that the total of the external fields of the distribution of cylinders 
till, along any radius, also have velocities proportional to rn, if the 
loading is proportional to rnI 

Consider the flow induced by an ellipse of given shape and unit 
size (say unit semimajor axis) moving at velocity V co8 x. A6 previously 
indicated, the induced velocity ccmponent pmallel to the minor axis 
(parallel to the direction of motion of the ellipse) is the ccanponent 
of interest. Along any direction f3 from the origin, this induced 
velocity is a function of the radial distance p. 
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If, while the shape remains constant, the lfnesr dimensions of the 
ellipse are changed by the factor k, the velocity originally existing 
at radial distance p will be found at radial distance kp along the 
given directicm 0. For the general ellipse of size k, then, the 
velocity component v* can be expressed as 

V' = f&k/d 

The velocity induced by an increment in size, or annulus, corresponding 
to dk is 

where f' denotes the derivative with respect to k/p. If each incre- 
mental velocity is weighted by the factor .kn, the total velocity is 

s 

K 

k=C 
knf'(B,k/p)$$ - on (k/dnfr (W/d+ 

where the upper 1imJ-J K is that value of.. 
touches the specified point (p,e). 

k for.wh$ch the ellipse just 
(As previously noted, the present 

_ 

discussion concerns only the contributions of those annuli for which the 
point is located externally.) Changing the variable of integration 
from k to k/p changes the form of the preceding expression to 

p$i;:O 
&/dn fr (e,k/p)d(k/P) = p*(e,n> 

since the upper l&uit K/p is now a function only of 8. Thus, the 
induced velocity along any radial line is proportional to pn which 
was to be proved. The proportionality factor is a function of both 8 
and n. It till. be observed that this part of the proof can apply to 
any shape, since the fact that the wake is elliptical was not required 
or used in the proof. 

Performing the indicated integration ;in order to get the proportion- 
ality factor F(e,n) is obviously a somewhat awkward task. Possibly 
the most convenient method is first to integrate by parts in order to 
return f' to f (that ia, VI, for whLch an expression wa8 previously 
presented), and then.de.termine.the resulting integral numerically. For 
either the lateral or longitudinal axis, however, the calculation may 
be performed tithout excessive difficulty. The method will be here 
indicated. 
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For the lateral axis (51 = O), the previously derived expression for 
V' reduces to 

so that the problem is reduced to evaluating 

Substituting c = x' sin a changes the integral to a form that csn be 
integrated by application of items 274 s& 263 of reference 7. 

For the longitudinal axis q = $ the expression for v' reduces to 

so that the problem is reduced to evaluating 

s 

EY’ 

C”k v 
( 

‘22 + yf2 - y’ 
) 

dc 
00 \k2+yt2 

Substituting c=y'tsna changestheintegraltoaformthatcanbe 
evaluated by application of item 274 of reference 7. 

The case X = PO.- The limiting case of the flat wake is frequently 
assumed for convenience in analyses pertaining to high-speed forward flight. 
Since the rotor and the wake are in the same plane the case is analogous to 
that of classical linearized w%ng theory, with the wing in this instance 
having a circular plan form and a circularly symmetrical loading. 

Consider first a uniformly loaded rotor. The "span load" distribu- 
tion of the disk, considered as a wing, is then elliptical, since it is 
merely proportional, at each spanwise station, to the "chord'l. As is 
well known, the downwash in the far w&e behind sn elliptically loaded 
wing is uniform. That is, disregarding the rolling-up phenomenon, the 
flow in the vertical plane normal to the far w&e is the two-dimensional 
flow about a horizontal straight line of span equal to the rotor diameter, 

moving downward w$th a velocity equal to 
2CLV 2CLV CLV - 

~(Aspect ratio) = m = 2 
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. 
(see fig. 16). The complex velocity for this two-dimensional flow 
around the far wake is given by . 

dw 
- = u’ I iv’ dz' 

= y gtr2 + i 

where 

W complex flow function 

r semispan of wing (or radius of the rotor) 

Z’ = x' + iy' where, in the present case (X = W">, x* is the ssme as 
lateral dimension y and y' is the- same as vertical 
dimension z 

If the radius of the uniformly loaded.circulsr wing is increased 
by dr, the ccanplex velocity in-the flow field changes by 

. 
-.. . 

This expression thus gives the complex velocity in the far wake contributed 
by a wing in the form of a circular annulus of radius r and width dr, 
and having a lift coefficient -Cc,. - -. - -- 

Now consider a circular wing on which the loading is proportional 
to the nth power of-the radius. It Is made up of ann~&L of variable 
radius r snd lift coefficient given by, say, Am, where A is a 
constsxlt. The total complex velocity in the far wake is found by 
substituting Am for CL in the preceding expression and integrating 
with respect to r between 0 and the outermost atmulus, r= R. The 
complex velocity is thus 

where the upper limit R is greater than 1~~1. 

In order to avoid a singular pointin.the integration, the point 
Zl will be assumed to lie slightly above the real axis and will be 
allowed to approach-the real axis after the integration is performed.. 

. 
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Substituting r = zl sin 8 (where 8, in general, is complex) transforms 
the integral to 

which can be evaluated by first applying the second form of item 274 of 

reference 7 and then reducing 
s 

sin=% d9 by successive applications of 

item 263. Except for the last term, the integral is 

-tiztnv sir++% tan 8 + t3inne co8 8 + -& sinn-2e cos 8 + 
[. 

n(n - 2) ' 
(n l)(n 3) Sill- 

4 
8 cos 8 + . . - - . 1 

Substituting the limits snd letting z' become a pure real, less then R, 
results in a pure real; that is, sll af these terms contribute nothing 
to the vertical-velocity component. The finaltermof the integral 
involves 

R 

s 

SLIl -+ 

s 

sin -15 
sin 8 de or de 

0 0 

depending on whether n is even or odd, respectively. For n even, 

s 

-1L sin zt 

I 

sin 
-" R.P. sin 8 de= R.P.(- CO8 e) 

0 0 
= R.P.[ \I- + 4 

which approaches 1 as z' approaches a pure real, x'< R, since the 
first term in the bracket approaches a pure imaginary. For n odd, 

-15 sin zt -1JL sin zt 
R.P. 

s 
de = R-P.(e) 

0 I 0 

which may be evaluated as follows: i 

Let 
e=p+iq 
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then .I 

sin 0 = sin(p + iq) = sin p cash q + i COB p sinh q = 3 

Since 5 approaches a pure real as zf-4 x', the imaginary term must 

be zero; that is, COB p = 0, or p = x/2. Accordingly, 

. 
-_I 

L 

Sin 
R.P.(B) ---, 42 

0 

as 2' approaches a pure real, x' < R. The final result for the down- 
wash velocity at the real point 2' = x' is, for n cdd, 

AxgnVnn-2 n-4 
G' 

. . . (1) Jr 
2 11 n - l)(n - 3) . . .(2 2 

and, for n even, 

Ax’nv n(n - 2)(n - 4). . .(2 
2 [(n - l)(n i 3) . . .(4-j 

For n = 0, the result is g; for n = 1, it iS AxjInvj for n = 2, it 

iS 

in 

in 
at 

of 

A study of the symmetry relations concerning the induced velocities 
the plane of a uniformly loadedrotor Lndicates that: 

1. The sum of the induced velocities at points (x,y) and (-x,y) 
the rotor disk is constant and equal to twice the induced velocity 
the center. 

2. The induced velocity is constsnt all along the lateral diameter 
the disk. 

3. The sum of the induced velocities at pofnts (x,y) and (-x,y) in 
the plane of, but outside, the rotor disk-equale the induced velocity at 
the corresponding point near the far wake. Thfs sum canbe determ&ned 

-- from the two-dimensional flow about the elLLpse that represents the wake 
cross section. .- _ --. - 

. 
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A study of the relation between the radial load distribution and the 
radial downwash distribution in the wake of a nonuniformly loaded rotor 
shows that, if the disk loading varies as the nth power of the radius, the 
induced velocity in the far wake also varies as the nth power of the 
radius. 

Langley Aeronautical Laboratory, 
National Advisory Commit-Lee for Aeronautics, 

Langley Field, Va., February 24, 1956. 
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Figure l.- Coordinate system of rotor and wake. Anwr.5 dmote positive 
d.ircction. 
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(a) Unifom load. 

(b) Nonuniform sxially symmetric load. 

Figure 2.- Assumed vortex pattern behind rotor. 
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FIgme 3,- Mek loadings considered In calculaticms. 
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(a) X = 0' = tad 0. 

Figure 4.- Lines of constant valm of induced velocity ratio v/v0 in 
the longitudinal plane of synmtry of a rotor with a -izianguLar disk 
load. 
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(b) X = 266.56' = tm-1 l/2. 

We 4.- Continued. 
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(a) x = 63.43’ = tm-l 2. 

Figuie 4.- ContFrmecL 
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(e) x - 755.97d = tm”l 4. 

Figure 4.” CotiinueB. 
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(f) x.- $a0 = tall-l m. 

plgure 4.- Concluded. 
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(a) x = 63&O = tan-1 2. 

Figure 5." r&es of constat value of irlamd wlocity ratio v/q in 
the longltudlnalph of eymnetryoiarotmwithatypicalmeasured 
mean disk bad. 
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(b) x = 7!Lg-p = tan-l 4. 

Mgure 5.- c0tiFnuea. 



r* 
d 

I I \I I Y--L.,& I I I I I ) ! I I I I I I 



NACA TN 3690 

2 

% l 
. . 0 II’III”“Il’-‘Il’l”““‘l 

-3 -2 -1 0 1 2 i 3 

- -- .-. -~ -- 

(a) x = o” = tan-l 0. 
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(b) x = 26.~6~ = tan'= l/2. 
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(4 x = 450 = tan-l 1. 

Figure 6.- Induced tilocity diE$ribution along the X-~&S of a rotor- 
with a tr+gular disk load. __ I~_ - - 
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(a> X = 63.43O = tan-= 2. 
I 

(e) X = 75.970 = tan-1 4. 
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-3 -a -1 0 f 1 2 3 

(f) x = 900 = tan-= m, 

FUure 6.- Concluaed. 
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J 

-3 -s? -1 

- (4 X = 63.430 = t-an-1 2. 

b) X = 75.970 = tan-1 4. 

Figure 7.- Induced velocity distribution along the X-axis of a rotor 
with a typical measured mean disk load. 
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figure '8.- Induced velocity distribmon on the Y-ads d a rotOr with 
.a triangular dlek load. 
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Figure 9.- Induced vel.ocity distribution on the Y-axis of 8 rotor with 
aty-picalmeasureameea disk loading. 
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Figure lO.- Lines of constant wdue of induced velocity ratio v/v0 
in the J.ongitudinaJ. plane of symnetry of a rotor with a uniform disk 
load. x = 63&O = tad 2. (Reproduced from ref. 1;) 
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Plgure IL.- Effect op disk load distribution on the di8tribUtiOn of! 
induced velocity &long X-axis. X =63.43' = tan-l 2. 
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Figure J.2.” Wfed of disk load distribution on the distribution of’ 
bduced velocity along the Y-axis. X = 90’ = tad m. 
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(a) Rotor and mke. ; (b) G.ke rotated 160” about ~-axis. 

(c) Vortex cylinders shorn in figures 13(a) and (b) fitted together to 
fcml an infinite cylinder. 

Fcigure 13.- Syrrrmetric~ located points in the rotor disk. 
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FUmre 14.- Symnettic.ca;Uy located pointe in the plane of, but outdde, 
the rotor disk. 



Figure 15.- !Puo-dhm3lonal croseflm around eu ellipse. I 
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